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Nuclides in various regions of the Nuclide Chart have shapes that are characterized by sizeable 
stable, axially symmetric, quadrupole deformations. One of the prominent features in the level 
schemes of these nuclides is the systematic occurrence of well-developed rotational bands. A 
rotational band is a sequence of levels associated with a given intrinsic state, or "band head", 
which arise from the addition of rotational energy to the nuclide in that particular state. This 
rotation takes place about an axis perpendicular to the nuclear symmetry axis. Any intrinsic state 
(one-quasiparticle, multi-quasiparticle, vibrational, etc.) may constitute a band head.  
 
In the coupling schemes appropriate to these nuclides, the intrinsic (i.e., nonrotational) and the 
rotational motion can, to a first approximation, be separated, with the result that the matrix 
elements of various operators can be expressed as products of nonrotational and rotational terms. 
This leads to a great simplification in the calculation of a number of properties of these levels, 
since the rotational portion can frequently be evaluated using relatively simple "geometric" 
considerations.  
 
In the simplest picture, the band members have energies that vary with spin as J(J+1), a common 
K value and intraband gamma transitions that are characterized by large transition quadrupole 
moments. To a first approximation, the band members have a common intrinsic state. However, 
residual interactions may lead to some admixtures of different intrinsic states. 
 
(In instances where strong octupole-correlation effects - e.g., parity-doublet bands - are present, 
strong E1 transitions, which connect adjacent-spin band members, are observed. Also, the recent 
observation, in the high-energy excitation spectrum of certain nuclides with near spherical 
symmetry, of a "band structure" whose members are connected by M1 transitions and result from 
different orientations of the angular-momentum vectors of the residual protons and neutrons may 
represent a situation which is qualitatively different from that considered here.) 
 
Note: In the following, we use the terms �single-particle� state and �quasiparticle� state more-or-
less interchangeably. Also, the reference list is not intended to be complete. It simply includes 
references that illustrate the points under discussion. It is heavily weighted toward works with 
which the author has been personally involved. The reader can doubtless come up with many 
more. A number of excellent review articles [e.g.,1-4] exist, which provide considerably more 
depth than is given in this presentation and to which the interested reader is referred for 
additional information. 
 



 

 

I. Wave Functions and Energetics 
  
In the presence of nuclear deformation, the degeneracies inherent in the various spherical shell-
model states are broken and their quantum numbers (nlj) are no longer good ones. A typical 
dependence of the resulting �single-particle� states on the nuclear deformation is shown on the 
so-called �Nilsson diagrams� in Figs.1a and 1b, taken from [5]. 
 
Here, a good quantum number is K, the projection of the particle�s total angular momentum on 
the nuclear symmetry axis. The energy levels are labeled by the so-called asymptotic quantum 
numbers [N nz Λ]. K= Λ + Σ, where Λ and Σ (= ± ½) are the projection of the particle�s orbital 
angular momentum and intrinsic spin, respectively, on the nuclear symmetry axis. Each such 
Nilsson state (or �orbital�) consists of a mixture of the various spherical shell-model states, with 
amplitudes Cjl, and can accommodate only two particles, having projections K and -K.  
 
The asymptotic quantum numbers are quite useful in assessing the properties and interactions of 
the particles occupying the levels (or Nilsson �orbitals�). This is one of the features of the 
strongly deformed nuclei that make their study so interesting for the average experimentalist and 
so helpful for the nuclear-data evaluator. Useful selection rules involving the asymptotic 
quantum numbers, as summarized in [5], are shown in Fig. 2.  
 
If the couplings among the states are not too strong, the energies of the band members can be 
expressed by the relatively simple expression (see, e.g.[1] and references therein):  
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where           X = J(J+1)-K2 .            
 
  
 
The last term in Eq.(1) describes the �staggering� that arises from the coupling with other bands. 
For the present discussion, we simply call attention to this term for K=1/2 bands. In these cases, 
there occurs the so-called decoupling parameter, a, which is characteristic for each K=1/2 band. 
It is given by the ratio A1/A in Eq(1). 
 
In view of the close connection between level energy and level spin within a rotational band, in 
making Jπ assignments the evaluator may take into account rotational-band considerations as 
well as the usual arguments regarding possible Jπ values. This frequently makes it possible to 
make Jπ assignments with great confidence (strong arguments) from data which would not 



 

 

otherwise (e.g., in regions of the Nuclide Chart where rotational bands are not found) be 
conclusive.  
 
Considerations involving the use of Eq.(1) in nuclear data evaluation are presented in more detail 
in the article on deformed nuclei in Procedures Manual for Evaluators [6] and are not discussed 
further here.  
 
II. Configuration Mixing 
 
The Nilsson states illustrated in Fig. 1 constitute a good approximation to the actual intrinsic 
(nonrotational) states 
occurring in real nuclei. However, residual interactions introduce admixtures into the wave 
functions of the nuclear states that can significantly affect their properties. We now briefly 
summarize some of the more important of these. 
 
 A. Rotation-particle (Coriolis) Coupling 
 
The nuclear rotation induces a mixing of Nilsson states. This so-called Coriolis coupling mixes 
states having the same Jπ values but (to first order) K values that differ by one unit. This 
interaction repels the two states involved, with the result that, Coriolis-mixed rotational bands 
appear compressed or expanded, depending on whether they were initially below or above, 
respectively, each other. For a given Nilsson state, this interaction is strongest among adjacent-K 
states originating from the same spherical shell-model state (see Fig. 1). It increases with 
increasing spin (J) and is stronger the higher the j-value of the originating spherical shell-model 
state. Thus, in the odd-mass nuclei, Coriolis effects are strongest among the i13/2 neutron states 
and the h11/2 proton states in the rare-earth region and the j15/2 neutron states in the actinide 
region.  
  
Coriolis effects are also especially prominent in the octupole-vibrational states in the even-even 
nuclides of the rare-earth elements, as discussed in detail in [7,8]. In fact, observation of 
significant Coriolis-related effects can provide very helpful information regarding the 
configurations of the nuclear levels involved.  
 
A more detailed discussion of the features of this interaction, including the form of the relevant 
matrix elements, the dependence on the asymptotic quantum numbers and how it can 
significantly affect various nuclear phenomena, is given in the relevant section of [6].  
 
Note: Although the admixtures induced by Coriolis coupling may be rather small, when the 
admixture carries with it a large matrix element for a given process (e.g., an au β transition, a 
�rotational� E2 transition or a favored β transition), then the admixture may have a dominant 
effect on that process. 
 
  
B. Quasiparticle-phonon Coupling  
 



 

 

In the even-even nuclei, a prominent systematic feature of the level scheme is the occurrence, 
below the pairing gap, of collective excitations having Kπ=2+, called Gamma Vibrations. In the 
odd-mass nuclei, there can be two gamma-vibrational states  associated with each one-
quasiparticle state - the base state - (of K-value K0), having K-values |K0-2| and K0+2. Of these 
two, the one having the smaller K-value lies below that having the larger K-value. These 
excitations are frequently found to be strongly mixed with one-quasiparticle states. As discussed, 
for example in [1], this mixing can be large when the one-quasiparticle state occurs near the 
gamma vibration and where they are connected to the base state by a large E2 (Y2,±2) matrix 
element. As indicated in Fig.2, their asymptotic quantum numbers are related as follows: 
∆N=∆nz=0, ∆Λ=∆K=±2.  
 
For pure gamma-vibrational states with K=1/2, the decoupling parameter is expected to be zero. 
When a one-quasiparticle state is mixed into a gamma vibration, the decoupling parameter is no 
longer zero, but is generally smaller than that expected for the pure one-quasiparticle state.  
 
C. Mixing of  two-neutron and two proton excitations  
 
In even-even deformed nuclei, two-quasiparticle excitations of both two-proton and two-neutron 
character occur near and above the pairing gap. These excitations are sometimes found to be 
strongly (30% or more) mixed. Perhaps the best known and documented of these cases is that of 
the two Kπ=8- bands in 178Hf, as discussed, for example, in [9]. 
 
III. Electromagnetic Transition Probabilities 
 
The following expressions for E1, M1 and E2 transition probabilities are relevant to this 
discussion.(For an excellent and more comprehensive treatment, see the section on Transition 
Probabilities in [6].) We do not treat the effect of internal conversion here, since it should be 
done as is customary in such circumstances. In terms of the disintegration constant, λ, for gamma 
emission, we have 
 
 
    λ(E1)↓  = 1.59 × 108 (Eγ)3 B(E1) sec-1,              (2) 
 
  
 
    λ(M1)↓  = 1.76 × 104 (Eγ)3 B(M1) sec-1,            (3)  and   
 
  
 
    λ(E2)↓  = 0.01224 (Eγ)5 B(E2) sec-1                  (4). 
 
  
 
Here, Eγ is the gamma energy in keV, B(E1) and B(E2) are in e2b and e2b2, respectively, and 
B(M1) is in (µN)2.    
 



 

 

For gamma transitions of multipolarity L from a state of spin J in a band to two members of 
another (or the same) band having spins J� and J�, the Alaga rules [10] state that the ratio of the 
reduced transition probabilities is given by the ratio of the squares of the relevant Clebsch-
Gordan coefficients, viz. 
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 A. E1 Transitions  
 
For E1 transitions between �single-particle� states, the Alaga rules do not generally give good 
agreement with experiment. This arises, at least in part, because all such transitions are 
asymptotically hindered, as inspection of the selection rules in Fig. 2 indicate. 
The orbitals that are connected by unhindered E1's lie in the adjacent major shells and thus are 
not found among the low-lying states of the deformed nuclei.  
 
Nonetheless, it is found that, in some cases, the reduced E1 transition probabilities are well 
described by the Alaga-rule predictions. Perhaps the best studied of these cases involve the 
octupole-vibrational bands in the even-even nuclei [7,8]. The good agreement here, which 
involves transitions with both ∆K=0 and ∆K=1, suggests that the Alaga rules are obeyed by 
collective E1's. Thus, if in an analysis of E1 branching, one finds that the Alaga-rule predictions 
are obeyed, it is reason for suspecting that the E1's are collective and that, for example, octupole-
related effects are involved. 
 
 B. E2 Transitions  
 
These play a prominent role in the study of the deformed nuclei, owing to the fact that intraband 
transitions are governed by the 
large intrinsic quadrupole moment, Q0, of the nucleus. The B(E2) values in these cases are given 
by the expression  
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If the intrinsic quadrupole moment is known or can be estimated, as often the case, then the 
absolute B(E2) value for an intraband E2 transition can be inferred. From this, absolute transition 
probabilities (and hence the level lifetime) can be deduced with reasonable confidence if the 
gamma branching is known. Further, for the deexcitation of a band member to two lower-lying 
members of the same band, the Alaga rules can be used to deduce the E2 component in the 
cascade (∆J=1) transition, relative to the crossover (∆J=2) one, from which the M1 component in 
the cascade transition can be deduced. Using Eq.(3) and the expression  

for B(M1) values within a rotational band, one can extract values for the g-factors of the cascade 
transition or at least of the ratio (gK - gR)/Q0. These quantities should be reasonably constant 
within a band and can yield important information about the configuration of the band involved, 
as has been demonstrated, for example, in [8,9]. 
  
IV. Beta Transitions  
 
Alaga-rule relations have been formulated for relative β branching from a given state to members 
of daughter-nucleus band, but in practice these are not very useful.  
 
The important aspect of β decay that is so helpful in the analysis of data for the deformed nuclei 
is the occurrence of  so-called allowed-unhindered (au) β transitions. These are transitions for 
which the asymptotic quantum numbers of the orbitals involved in the transition do not change 
(cf. Fig. 2). Such transitions have small log ft values. Among the deformed nuclei in the rare-
earth region, β transitions having log ft < 5 are all au in character. Some au beta transitions are 
observed to  have log ft values somewhat larger than 5 (up to 5.3, say). However, since some β 
transitions that are not au have log ft values >5, observation of a β transition with log ft does not 
automatically establish (or reject) it as au.  
 
Observation of an au transition definitely establishes the Nilsson-orbital characters of the states 
involved, from which unique configuration assignments can frequently be made. For further 
discussion, see the related material in [6].  
 
V. Alpha Decay  
 
In α decay, the favored transition (hindrance factor (HF) < 4) connects states having the same 
configuration. In the odd-mass nuclides, this means that the initial and final states have the same 
Nilsson-orbital assignment. The α transitions to the higher-spin members of the band have 
increasingly larger HF�s, but usually these are still smaller than those to final states associated 
with other Nilsson orbitals. For even-even nuclei, the favored transition connects the two ground 
states. Transitions to the higher-spin members of the ground-state band have increasingly larger 
HF�s, although these may still be lower than those of transitions to states having different 
configurations. (Note, however, that collective quadrupole vibrations may also be populated by α 
transitions having comparable HF�s.) 
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Trends for the variation of the α HF�s within rotational bands have been analyzed and are given 
in [11].  
 
VI. Single-nucleon Transfer Reactions (light-ion-induced)  
 
In the strongly deformed nuclei, these reactions are a quite powerful tool for making Jπ 
assignments. For populating the members of a band in odd-mass nuclei, the measured cross 
sections can yield the coefficients, Cjl ,of the (j,l) components in the wave function of the Nilsson 
orbital of the transferred nucleon. Since, in this case, the j value is also the J value of the level, 
this yields the J-value of the level. Since each Nilsson orbital contains a �unique� set of Cjl 
coefficients, the cross sections for populating the members of a band based on a Nilsson orbital 
form a specific pattern (�fingerprint�), from which both Jπ and configuration assignments can be 
made with considerable confidence, providing that the spectrum is not too complex.  
 
For transfer to even-mass nuclides, the situation is somewhat more complicated, but the cross-
section patterns are still characteristic of the transferred nucleon.           
 
An excellent review of single-nucleon-transfer reactions can be found in [12].  
 
VII. Coulomb Excitation    
 
In the deformed nuclei, the members of the ground-state rotational band are populated in 
Coulomb excitation with an enhanced probability relative to those of near-lying states that are 
not band members. If a sequence of levels having �rotational-like� energy spacings is found to be 
excited with enhanced probabilities (transition rates of tens of Weisskopf units or greater),this is 
evidence that this sequence (at least up to the first �backbend�) forms the ground-state rotational 
band for the nuclide involved and provides reliable Jπ values for the band members, assuming 
that at least one of the spins is known. 
 
VIII. The Gallagher-Moszkowski Rules  
 
These empirically established coupling rules [13] are useful in inferring the relative positions of 
the two two-quasiparticle states formed by the two different couplings of the quasiparticle 
constituents. In the doubly odd nuclei, the state corresponding to the parallel alignment of the 
projections (Σ=1/2) of the intrinsic spins (the �triplet� state) of the two odd particles should lie 
lower than that produced by the antiparallel (or �singlet� state) alignment. In the even-even 
nuclei, the opposite should be true, with the singlet state lying below the triplet. 
 
For the odd-odd nuclei, these rules seem to have considerable experimental support (only five 
well established violations out of dozens of cases, see [4]). Thus, they may be used with some 
confidence, especially as an aid in arriving at possible ground-state configurations. For the even-
even nuclides, the situation is less clear, since the excitations occur at or above the pairing gap, 
where the level densities are high and the coupling to the various vibrational excitations affects 
the singlet and triplet states differently.  
 
                      A Concluding Remark 



 

 

 
In order to see how some of these considerations can be used to extract significant nuclear-
structure information in a specific case, the reader might want to read the analysis of the data on 
the level scheme of 229Th presented in [14]. 
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